Poisson cohomology of holomorphic toric Poisson manifolds. I
نویسندگان
چکیده
منابع مشابه
Deformations of Holomorphic Poisson Manifolds
An unobstructedness theorem is proved for deformations of compact holomorphic Poisson manifolds and applied to a class of examples. These include certain rational surfaces and Hilbert schemes of points on Poisson surfaces. We study in particular the Hilbert schemes of the projective plane and show that a generic deformation is determined by two parameters—an elliptic curve and a translation on ...
متن کاملToric Poisson Structures
Let TC be a complex algebraic torus and let X(Σ) be a complete nonsingular toric variety for TC. In this paper, a real TCinvariant Poisson structure ΠΣ is constructed on the complex manifold X(Σ), the symplectic leaves of which are the TC-orbits in X(Σ). It is shown that each leaf admits an effective Hamiltonian action by a subtorus of the compact torus T ⊂ TC. However, the global action of TC ...
متن کاملGeneralized Classical Brst Cohomology and Reduction of Poisson Manifolds
In this paper, we formulate a generalization of the classical BRST construction which applies to the case of the reduction of a poisson manifold by a submanifold. In the case of symplectic reduction, our procedure generalizes the usual classical BRST construction which only applies to symplectic reduction of a symplectic manifold by a coisotropic submanifold, i.e. the case of reducible “first c...
متن کاملEssential Variational Poisson Cohomology
In our recent paper [DSK11] we computed the dimension of the variational Poisson cohomology H•K(V) for any quasiconstant coefficient l × l matrix differential operator K of order N with invertible leading coefficient, provided that V is a normal algebra of differential functions over a linearly closed differential field. In the present paper we show that, for K skewadjoint, the Z-graded Lie sup...
متن کاملThe variational Poisson cohomology
It is well known that the validity of the so called LenardMagri scheme of integrability of a bi-Hamiltonian PDE can be established if one has some precise information on the corresponding 1st variational Poisson cohomology for one of the two Hamiltonian operators. In the first part of the paper we explain how to introduce various cohomology complexes, including Lie superalgebra and Poisson coho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2019
ISSN: 0021-8693
DOI: 10.1016/j.jalgebra.2019.03.001